Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Investigación
  3. Noticias de Teoría
  4. Teoría
  5. La IA ayuda a decodificar cómo se construyen los minerales en la naturaleza

La IA ayuda a decodificar cómo se construyen los minerales en la naturaleza

20/10/2025

A new study led by Pablo Piaggi, Ikerbasque Research Fellow at CIC nanoGUNE, offers fresh insight into how nature forms minerals thanks to cutting-edge artificial intelligence. Published in the special issue Machine Learning in Chemistry of the Proceedings of the National Academy of Sciences (PNAS), the research demonstrates how machine learning models – AI systems that learn from data – can simulate complex chemical reactions essential to understanding biomineralization (the process by which organisms form minerals like shells and skeletons) and carbon sequestration, a key mechanism in mitigating climate change.

default
PNAS

The study focuses on calcium carbonate, a mineral found in seashells, corals, and geological formations. It also plays a pivotal role in capturing atmospheric CO2. While molecular simulations have long been used to study its formation, previous models lacked the precision to capture subtle but critical reactions, such as proton transfer, a fundamental step in crystallization. 

To overcome this, Piaggi and colleagues leverage recent advances in artificial intelligence to develop a new machine learning model based on first-principles quantum mechanics. This AI-driven approach not only improves accuracy but also reveals previously hidden details: for example, how the loss of a proton is mediated by the association of the ions. 

The implications are significant. This method represents an important step in the ab initio study of chemical reactions in biominerals and their role in crystallization, helping researchers better understand how these processes occur in natural environments like seawater, where conditions are more complex but highly relevant to both biology and climate science.

The Machine Learning in Chemistry Special Feature

The study is part of a broader trend highlighted in PNAS special issue Machine Learning in Chemistry, which showcases how advances in machine learning, data science, and artificial intelligence are rapidly reshaping nearly every area of chemistry. The articles illustrate how these methods are enabling new discoveries in molecular design, reaction prediction, materials development, and more, while outlining key directions for future research in this fast-growing field.

For further information:

Article reference: 
Ab initio machine-learning simulation of calcium carbonate from aqueous solutions to the solid state
Pablo M. Piaggi, Julian D. Gale, and Paolo Raiteri
PNAS, 122, 41 (2025)
https://www.pnas.org/doi/10.1073/pnas.2415663122
 

Tags
THEORY
nanoscience
Nanotechnology
research
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 20/10/2025

    Sir John Pendry recibe la Medalla Copley de la Royal Society

  • 14/10/2025

    Inauguración del ordenador cuántico IBM-Basque Country en Donostia

  • 07/10/2025

    Two-step excitation unlocks and steers exotic nanolight

  • 06/10/2025

    “LA ESCALABILIDAD ES EL PRÓXIMO GRAN RETO DE LAS TECNOLOGÍAS CUÁNTICAS”

  • 26/09/2025

    "Nos centraremos en la traslación de la nanomedicina y las tecnologías cuánticas al mercado"

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC